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1

Introduction to recursion

What is recursion? It is simply a technique of describing something
partly in terms of itself. This notion has wide applicability. We are
all used to the idea that an adjectival clause, for example, may
contain another adjectival clause. Who has not at sometime or
another recited This is the house that Jack built?

This is the cock that crowed in the morn

That woke the priest all shaven and shorn

That married the man all tattered and tom

That kissed the maiden all forlomn

That milked the cow with the crumpled hom

That tossed the dog

That worried the cat

That killed the rat

That ate the malt

That lay in the house that Jack built.

On a more prosaic level, if you were asked for the differential
with respect to x of x? 4+ 5x you would instantly, and correctly,
reply 2x + 5. If you were pressed to explain your answer you would
probably reply, firstly, that the differential of x% + bx is equal to
the differential of x? plus the differential of 5x, and, secondly, that
the differential of x2 is 2x and of 5x is 5. This then is the essence of
recursion which consists of two parts:

) ) d d d
(i) the recursive rule: — (x* + 5x) = — (x?) + — (5x)
dx dx dx
in which the differential of a sum is defined in terms of the
differential of the two terms;

d d
(ii) the explicitly defined cases: — (x%) = 2x, — (bx) =5
dx dx

which terminate the recursion.



For more general expressions, of course, we need further recursive
rules, such as those for products and quotients, and more explicitly
defined cases, such as that for the differential of a constant. We will
return to this example in Chapter 3.

What are the advantages of recursion as a programming technique?
From the point of view of this monograph there are four.

(i) For many problems the recursive solution is more natural than
the alternative non-recursive solution. Of course naturalness is in the
eye of the beholder and for some readers an unfamiliarity with
recursion may indeed make the early examples appear unnatural.
However the relationship between recursively defined data structures
and recursive procedures is very close and by the time trees are
introduced in Chapter 3 the appropriateness of recursion will be
clear enough.

(i) It is often relatively easy to prove the correctness of recursive
procedures. Inasmuch as recursive procedures are direct translitera-
tions of the mathematical formulations involved, the proofs are often
trivial. Even where they are not, the proofs are based on the very
familiar process of induction.

(i) Recursive procedures are relatively easy to analyse to deter-
mine their performance. The analysis produces recurrence relations,
many of which can easily be solved.

(iv) Recursive procedures are flexible. This is a very subjective
statement but, as we demonstrate in Chapter 7 and elsewhere, it is
quite easy to convert a general procedure into a more specific one.
Indeed this is often a useful design technique: first write a program
for a problem which is a generalisation of the given problem, and
then adapt it to the problem in hand.

What are the costs to be incurred in using recursion? There are two:

(i) Recursive procedures may run more slowly than the equivalent
non-recursive ones. There are two causes for this. Firstly, a compiler
may implement recursive calls badly. Most, if not all, Pascal compilers
handle recursion quite well and so the cost is small, perhaps 5% to
10%, perhaps nothing. At worst, as we shall shortly show, a recursive
procedure may run at half-speed though this applies only to the most
trivial procedures. Secondly, the recursive procedures we write may
simply be inefficient. It is easy to write such procedures as we shall
see, and we must always be on our guard to avoid doing so.

(ii) Recursive procedures require more store than their non-
recursive counterparts. Each recursive call involves the creation of
an activation record, and if the depth of recursion is large this space



penalty may be significant. This only arises with simple procedures,
however: with more complex procedures the depth is small, and,
what is more, the non-recursive versions themselves require space
which is proportional to the recursive depth. Furthermore, there are
some situations where the cost of the recursion, in both time and
space, can be eliminated quite simply by a compiler.

With this in mind we now consider some simple examples all of
which exhibit linear recursion. In these procedures there is only
one recursive call. Others, such as the differentiation procedure
referred to above, have two recursive calls, and we refer to this as
binary recursion. Yet others have an indefinite number (the one
written call is within a loop), and we refer to this as n-ary recursion.

It would be unreasonable to expect that the advantages listed
above should appear manifest in simple examples, since that is where
recursion is at its weakest. Consequently we will concentrate in this
chapter on explaining recursion and how it works and illustrating
some of its characteristics.

1.1 Some simple examples
The simplest example is the factorial function, which is
defined by:

pl=1, p=0,
=1x2x8x...p, p>0
From this definition the function of Fig. 1.1 follows immediately.

Fig. 1.1. A non-recursive function Fact.

function Fact(p:natural):natural;
var i,f:natural;

begin

f :=1;

for i := 1 to p do
f = f*i;

Fact := £

end { of function "Fact" };

where natural is defined as:
type natural = 0 . . maxint
In a study of the factorial function one of the first theorems proved is:
pt=1 p=0,
=px(p—1), p>0

from which the function of Fig. 1.2 immediately follows.



Fig. 1.2. A recursive function Fact.

function Fact(p:natural):natural;

begin
if p = 0 then Fact := 1
else Fact := p*Fact(p-l)

end { of function "Fact" };

Indeed, for many people, the theorem just mentioned is the definition.
In either case, it must be said that it is hard to argue that either
function is more natural than the other.

As a second example, we consider the highest common factor
(HCF) of two positive integers p and ¢g. A description of Euclid’s
algorithm for finding the HCF usually goes something like this:
‘Divide p by ¢ to give a remainder r. If » =0 then the HCF is q.
Otherwise repeat with ¢ and » taking the place of p and ¢’. From this
description the non-recursive version of Fig. 1.3 is usually derived.t

Fig. 1.3. A non-recursive version of Hcf.

function Hef(p,q:natural):natural;
var r:natural;
begin
r := p mod q;
while r <> 0 do

begin
P = q;
q = 1
r := p mod q
end;
Hef := q

end { of function "Hef" };
From the same description, the recursive version of Fig. 1.4 follows.

Fig. 1.4. A recursive version of Hcf.

function Hef(p,q:natural):natural;
var r:natural;
begin
r := p mod q;
if r = 0 then Hef := g
else Hef := Hef(q,r)
end { of function "Hcf" };

This is more natural in the sense that p mod ¢ is evaluated in only
one place, as in the description, whereas in Fig. 1.3 it is evaluated
twice.

1 As g must not be 0 we should introduce a type positive = 1 . . maxint for it.
Since we will give a version later in which ¢ may be 0, we do not do so.



Mathematically we can formulate this as:

hef(p, q) =P, p mod g =0,
= hcf(q,p mod g), pmodg#0
These two examples are fairly well known. As a third example
Fig. 1.5 gives a procedure, rather than a function, which prints out
an unsigned integer left-justified, that is, with no spaces preceding
the most significant digit.

Fig. 1.5. A procedure for writing an unsigned integer left-justified.

procedure WriteNatural(i:natural);

begin

if 1 < 10 then
write(chr(i + ord(’07)))

else
begin
WriteNatural(i ddiv 10);
write(chr(i mod 10 + ord(°07)))
end

end { of procedure "WriteNatural' };

Its action is fairly clear. If 7 is less than 10, it has only one digit
which is printed. If it is greater than 10 (say 375), the procedure is
called recursively to print ¢ div 10 (here 37) after which the final
digit (5) is printed.

1.2 How does recursion work?

The standard run-time storage organisation used in Pascal
to ensure the optimal use of store is the stack; and this organisation
automatically encompasses recursion. We will illustrate this with
respect to a program, Test, which simply reads x and calls WriteNatural
to print it. We assume that the activation record for a procedure
contains, as well as the parameters and local variables, two links. The
first, the return address link (ral), holds the address to which control
is to be returned on exit from the procedure. The second is called
the stack link (sl), because it is used to ensure that the stack returns
to the same configuration on exit from a procedure as it had on
entry. We assume that the stack is accessed by a set of registers,
called the display, one register being associated with each textual
level. In what follows we call them D1, D2, .... On entry to a proce-
dure one of the display registers has to be altered to refer to the
variables of this procedure. If the procedure is at level n, then Dn is
changed. It is the original value of this register that is the stack link.



A procedure call then must:

(i) stack the return address link,
(ii) stack the stack link,
(iii) adjust the display,
(iv) allocate space for the local variables,
(v) branch to the code of the called procedure.

The corresponding procedure exit then:

(i) recovers the space of the local variables,
(i1) adjusts the display using the stack link,
(iii) returns to the statement after the call using the return

address link.

We illustrate this with respect to the Test program mentioned
earlier which we give as Fig. 1.6. Note that two points are marked
o and § by means of comments.

Fig. 1.6. A program to test WriteNatural.

program Test(input,output);
type natural = O..maxint;
var x:natural;

procedure WriteNatural(i:natural);
begin
if i < 10 then
write(chr(i + ord('0’)))
elge
begin
WriteNatural(i div 10);
{ point B}
write(chr(i mod 10 + ord(’07)))
end
end { of procedure "WriteNatural" };

begin

read(x);

write(’ The value of “,x:1,
WriteNatural(x)

{ point o }

end.

’

is 7);

Suppose we run this program with 375 as data. Within the main
program there is only one activation record addressed via D1. It
contains only the variable x since the concept of links is irrelevant
for the main program. After read(x) we have:

D1

| B
875




On entry to WriteNatural after the call WriteNatural(x), an activa-
tion record is created for WriteNatural containing the links (ral and
sl) and the parameter ¢. It is addressed via D2.

D1 D2

Y x ¥ rd sl 7
375 o ? 375

Note that the stack link is irrelevant, since within the main program
D2 is unused.

On the second entry to WriteNatural, as a result of the recursive
call WriteNatural(: div 10), a further activation record is created for
WriteNatural. It is accessed via D2, while the previous activation
record becomes temporarily inaccessible.

D1 | D2

Yy x ral sl ‘

375 |« ? 375 8 [ | | 371

On the third entry to WriteNatural we have:

D1 D2
| x ral sl 7

375 a ?[375;3 | 37 ﬁ‘lls)
I ]

and chr(i + ord(’'0")), that is the character 3, is then printed.

On exit from this activation of WriteNatural, the stack is returned
to its previous state so that the second activation record becomes
accessible again, and control returns to point .

D1 D2

¥y x y ra sl 7
375 a l ? ] 375 8 { | l 37 ’

Then chr(i mod 10 + ord('0")), that is, the character 7, is printed.
On exit from this activation we have:

D1 D2

y x ral sl 7

375 o ? 375

and, as control returns again to point 8, 5 is printed.



On the exit from the first activation to WriteNatural the stack
returns to:

D1
‘ x

375

and control returns to «, at which point the program stops.

1.3 The storage cost of recursion

From the description of the implementation, the cost in
terms of storage associated with recursive procedures is clear.
If n is the maximum recursive depth, then the store required is
nx(p +1+ 2) where p represents the space required by the para-
meters and / that required by the local variables. Where the alternative
non-recursive solution requires only a small number of local variables
for its operation, this cost might be significant. (In the two relevant
examples given so far, Fact and Hcf, n is likely to be small but in
Chapter 2 we consider situations where n may be large.)

There are, however, some situations where the non-recursive
procedure requires an amount of store which is proportional to n, in
which case the comparison between recursive and non-recursive
versions may be less clear-cut. In these situations the extra store is
used as a stackt and we will assume that some appropriate facilities
have been added to Pascal. This is simply a matter of abstraction:
the implementation of the facilities in pure Pascal is trivial.

We assume a new structured mode, stack of, so that, for example,
the declaration:

var s:stack of natural
declares s to be a stack of natural numbers. This stack is initialised,
to an empty stack by:
clear s
Only two accessing statements are available. The first:
push ¢ onto s
pushes the value of the expression ¢ onto the top of s, while:
pop ¢ from s
pops the top value from s and assigns it to z. Finally:
s empty
s not empty
are predicates which test the state of the stack.

t The term stack thus refers to two concepts which are alike in their first-in, last-
out characteristics but have different rules of access.



Fig. 1.7 gives a non-recursive version of WriteNatural using these
facilities.

Fig. 1.7. A non-recursive version of WriteNatural.

procedure WriteNatural(i:natural);
var s:stack of natural;
begin
clear s;
while i >= 10 do
begin
push i onto s;
i := 1 div 10
end;
write(chr(i + oxd('07)));
while s not empty do
begin
pop i from s;
write(chr(i mod 10 + ord('0")))
end
end { procedure "WriteNatural' };

Clearly in WriteNatural the size of the stack will be smallf, perhaps
5 or 6, but the general principle is clear: the amount of store required
is proportional to the recursive depth, though as there will be fewer
links required (here there are none) the constant of proportionality
will be smaller than that for the recursive version.

Fig. 1.7 illustrates another point: that the procedures themselves
occupy space and the differences in procedure size must be con-
sidered. These are generally of a lower order, since there is only one
copy of a procedure code, whereas there may be many activation
records.

1.4 The time cost of recursion
We indicated in the opening paragraphs of this chapter that
even where they have been well written, recursive procedures may
run more slowly than their non-recursive counterparts. We illustrate
this here by using what is perhaps the most extreme example, the
factorial functions given earlier. In Fig. 1.8 we give counts of those
of the so-called structured operations that are involved: arithmetic,
assignment, loop traverse, procedure call and so on.
We also count the number of elementary operations by assigning
appropriate weights to the structured operations: arithmetic, simple
tests and assignments at 1, for-loop entry at 2 (for the assignment

t Indeed for this particular example we could avoid the use of a stack by trading
space for time, and using quite a different technique.



Fig. 1.8. Analysis of the Fact functions.

Number of operations Non-recursive Recursive
of the type (Fig. 1.1) (Fig. 1.2)
Arithmetic /4 2p
Assignment p+2 p+1
Test p+1
Parameter evaluation 1 p+1
Procedure call and exit 1 pt1
For-loop entry 1

For-loop traverse p

Elementary operations 5p+10 10p+8
Elementary operations (p=10) 60 108
Time on Cyber 73  (p=10) 210 us 380 us

and test involved), for-loop traverse at 3 (for the test, increment and
assignment involved), parameter evaluation at 1 (for the implied
assignment) and procedure call and exit at 5 (for assigning two links
and setting the display register on entry, resetting two links on exit).
From Fig. 1.8 we see that the recursive procedure is perhaps twice
as slow.t This is probably an upper limit on the differences between
a linear recursive procedure and the equivalent non-recursive version
because the body of Fact is quite trivial.

Fig. 1.8 gives as well some timings for the procedures run on
a Cyber 73, as do subsequent tables. The figures indicate that the
model is a fair approximation to the Cyber Pascal system. The
discrepancies arise from the simplicity of the model and from the
relative inaccuracy of the timer used.

1.5 Recurrence relations

The analysis of most of the procedures considered in this
chapter and the next (those exhibiting linear recursion) is very
simple and really needs no formalism. However this is not so with
binary and n-ary recursion, and so we will consider an analysis based
on the use of a recurrence relation. It is convenient to have the
notion of the size of a problem, so that if 7, represents the cost,
however defined, of evaluating a procedure of size k£ then the recur-
rence relation defines 7p in terms of the cost of evaluating the
smaller problem(s) into which it is broken down. For linear recursion
the size is closely related to the recursive depth and 7 is defined in

1 This set of weights is very arbitrary and may not be appropriate to some machines
and some compilers, particularly where procedures are handled by a subroutine
call.
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terms of T}, _1. A typical recurrence relation, which applies to Fact, is:
Thy=b+T,_1, k>0
=a, k=0
where a and b are appropriate constants. T,, can be determined quite
simply by a process of substitution.

Tn:b+Tn_1
=b+b+T,_o
=bX2+T__2
=b><n+T0
=bn +a

This is linear in n which coincides nicely with our use of the phrase
linear recursion. It is not the only form of recurrence relation that
arises in linear recursion as we shall see. However, in all recurrence
relations that do arise, the coefficient of T on the right-hand side is
always 1.

1.6 The choice of the explicitly defined case

We want now to consider in the next two sections two
aspects which are important in the design of recursive procedures.
Firstly the choice of the explicitly defined case. There is often some
flexibility in this choice. For example, we have chosen 0! = 1 as the
explicitly defined case in the factorial function. We might have
chosen 1! =1 as in Fig. 1.9; and provided we always called Fact
with a parameter >0 it would have operated successfully.

Fig. 1.9. The function Fact modified to use 1! = 1.

function Fact(p:natural):natural;
begin
if p = 1 then Fact :=1
else Fact := p*Fact(p-1)
end { of function "Fact" };

But note the implication that two functions for the same problem
with different explicitly defined cases are different in that one
function might fail in cases where the other does not. For example
the evaluation of Fact(0) using Fig. 1.9 would fail as p went out
of range!¥

t As we noted in §1.1 with respect to the parameter g of Hcf, it would be better
to define p to be of the type positive.

11



Considering the example Hcf, if we stop the recursion one step
later, that is when g = 0 rather than when p mod ¢ = 0, we produce
the elegant function of Fig. 1.10.

Fig. 1.10. A function Hcf stopping one step later.
function Hcf(p,q:natural):natural;
begin
if q = 0 then Hef := p
else Hcf := Hcf(q,p mod q)
end { of function "Hef" };
Note that the local variable r has disappeared. Note, too, that this
function gives an interpretation to Hcf(7, 0) where the previous
one did not.
The recurrence relation enables us to determine the effect of the
change. For the new version of Fact we have:
Tkzb’+Tk_1, k>1
=d, k=1
Note we have used constants a’ and b’ since they will in general be
different from a and b, even though this is not true for the factorial
functions. The solution is simply:
T,=bn+(ad —0")
Which is the faster depends on the values of a, b, ¢’ and &'. In any
event the different will be small. Thus the choice of explicit case is
usually made on the grounds of elegance or simplicity or generality.
When we consider binary recursion, the difference, however, may
tumn out to be significant.

1.7 Two-level procedures
The second aspect is the use of two-level procedures, in
which the main procedure contains within itself a procedure which
is recursive and which it calls initially. This technique has a number
of advantages which we now consider.

It is clear from the discussion of costs that the number of para-
meters is significant in that it affects both space and time require-
ments. Consider a function for evaluating the polynomial:

apx™ +ax" '+ ... +a,_1x +a,
This is usually evaluated by Horner’s method of nested multiplication:
(.- (((ag)x +a))x +ag) ... +a,_1)x +ay,
Fig. 1.11 gives a function in which the coefficients are assumed to
be in an array a.t

T Very often, as here, we will leave some types unspecified, where it is clear what
an appropriate definition might be.

12



Fig. 1.11. A non-recursive version of Poly,
function Poly(var a:coeff; x:real; n:natural):real;
var y:real;
i:natural;

begin

y := 0;

for i := 0 to n do
y = y*x + al[i];

Poly :=y

end { of function "Poly" };

Note that we have called @ as a variable even though it serves only
to transmit a value to Poly. The reason is simply one of efficiency.
Since each element of a is accessed only once, the cost of copying
the whole array (which calling it by value would involve) is more
than the cost of the indirect access (which calling as a variable
implies). Further we require less space, since here it requires a single
location (for the indirect address) whereas it would require space
for a copy if it were called by value. We will use this criterion for
the choice between call-by-value and call-as-a-variable extensively
in this book.

The standard recursive version also follows directly from Horner’s
re-arrangement as Fig. 1.12 shows.

Fig. 1.12. A recursive version of Poly,

function Poly(var a:coeff; x:real; n:natural):real;
begin
if n = 0 then Poly := a[0]
else Poly := Poly(a,x,n-1)*x + aln]
end { of function "Poly" };

Here a and x are unaltered between calls, and we consume both
time and space for them on each recursive call.

To avoid repeatedly assigning these redundant parameters we can
use a two-level approach as shown in Fig. 1.13.

Fig. 1.13. The two-level function Poly,
function Poly(var a:coeff; x:real; n:natural):real;

function P(k:natural):real;
begin
if k = 0 then P := a[0]
else P := P(k-1)*x + alk]
end { of function "P" };

begin
Poly := P(n)
end { of function "Poly" };

13



Here the body of the outer procedure Poly contains simply a call
to the inner procedure P with just the one parameter £ which is
initialised to n. Within P the values of a and x are accessed non-
locally. We will use these two-level functions (and procedures) quite
extensively in this book and, by convention, we will generally give
the inner function (or procedure) a name which is the first letter of
the name of the outer one, unless that happens to have a name which
starts with a prefix which is common to a group of procedures.

This function certainly uses less space since the inner recursive
function has only one parameter. The stack space we require is
5 locations for the outer function plus 3(n +1) for P, as against
5(n +1) for the single-level recursive function. (Of course, the
non-recursive function requires only 7 locations for the parameters
and the local variables.)

An analysis of all three functions is given in Fig. 1.14. It shows
that the two-level recursion requires fewer operations than the one-
level recursive function, but more than the non-recursive one.
However some of the operations involve non-local accesses which
the model assumes to be no more costly than local ones. This is
a fairly simplistic assumption, and Fig. 1.14 shows that it is not
appropriate for the Cyber.

Fig. 1.14. An analysis of the Poly functions.

Non-recursive Recursive Two-level
Wt (Fig. 1.11) (Fig. 1.12) (Fig. 1.13)

Arithmetic 1 2n+2 3n 3n
Assignment 1 n+3 n+1 n+2
Subscripting 1 n+1 n+1 nt+1
Test 1 n+1 n+1
Parameter evaluation 1 3 3n+3 n+4
Procedure call and exit 5 1 n+1 n+2
For-loop entry 2 1

For-loop traverse 3 n+1

Elementary operations Tn+19 14n+11  12a+18
Elementary operations (n=10) 89 151 138
Time on Cyber 73 (n=10) 350 us 540 us 540 us

However the two-level solution has other advantages which are
indisputable. Firstly, it enables us to maintain an acceptable interface
to the user. For example suppose we wished to write a procedure to
evaluate the polynomial:

ag + a1x +asx® + ... +a

(The one used earlier was agx™ + a;x" "1 + ... a,, so we will call this
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PolyUp, reflecting that the coefficients are increasing along the
polynomial.) Using Horner’s method we evaluate:

(-« - (((an)x +ap_1)x +a,_9)... +a)x +ap
A one-level procedure requires an extra parameter as Fig. 1.15 shows.

Fig. 1.15. A one-level function Poly Up.

function PolyUp(var a:coeff; x:real; i,n:natural):real;
begin
if i = n then PolyUp := aln]
else PolyUp := PolyUp(a,x,i+l,n)*x + alil
end { of function "PolyUp" };

This means that the user requires an extra (to him, useless) parameter
in each call such as PolyUp (a, x, 0, n).

The two-level function enables us to retain the usual function
heading as shown in Fig. 1.16.

Fig. 1.16. A two-level function Poly Up.

function PolyUp(var a:coeff; x:real; n:natural):real;

function P(i:natural):real;
begin
if i = n then P := an]
else P := P(i+l)*x + a[i]
end { of function "P" };

begin
PolyUp := P(0)
end { of function "PolyUp" };

Secondly, the use of a two-level solution enables us to accommodate
special cases quite simply. Consider a function Power whose value is
the nth power of x with the added constraint that 0" is 0. Fig. 1.17
gives a single-level function.

Fig. 1.17. A poor function for Power.

function Power(x:real; n:integer):real;
begin
if x = 0 then Power := 0
elgse if n < 0 then Power := 1/Power(x,-n)
else if n = 0 then Power := 1
else Power := x*Power(x,n-1)
end { of function "Power" };

Note that on each call x is compared with 0, even though, if it is
different from O on the first call, it will remain different from 0 for
all calls. Similarly n is tested to ensure it is not less than 0 at each
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call, when, if it were negative initially, its value would have been
immediately negated. The two-level solution of Fig. 1.18 avoids this
by dealing with these cases in the outer procedure.

Fig. 1.18, A two-level function for Power.

function Power(x:real; n:integer):real;

function P(k:natural):real;
begin
if k = 0 then P :=1
else P := x*P(k-1)
end { of function "P" };

begin

if x = 0 then Power := 0

else if n < 0 then Power := 1/P(-n)
else Power := P(n)

end { of function '"Power" };

Note that this is the recursive equivalent of moving constants outside
loops.

1.8 Developing the power example: a cautionary tale
The powering procedures implemented the definition:

x" =0, x =0
=1/x"" x#0,n<0
=1, x#F0,n=20

=xxx""1, x#0,n>0
As many readers will have noticed, this procedure is not very efficient
for large n. It is O(n) whereas the method often called ‘halving and
squaring’ is O (log n). This technique calculates x'%, for example, by
squaring x” whereas the original multiplies x by itself 13 times.
Formally we can specify the function:

x" =0, x=0
=1/x7", x#F0,n<0
=1, xF0,n=20
=x"2xx"2xx, x#0,nodd
= x"2 x x"12, x # 0, n even and >0

From this the function of Fig. 1.19 is easily produced.

Fig. 1.19, A faster version of Power.

function Power(x:real; n:integer):real;

function P(k:natural):real;
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begin

if k = 0 then P :=1

else if odd(k) then P := sqr(P(k div 2))*x
else P := sqr(P(k div 2))

end { of function "P" };

begin

if x = 0 then Power := 0

else if n < 0 then Power := 1/P(-n)
else Power := P(n)

end { of function "Power" };

The analysis of Fig. 1.19 is a little more difficult than those con-
sidered previously because of the different actions taken depending
on whether % is even or odd. However, the difference is small and we
can, as an approximation, assume that & is equally likely to be even
or odd. The recurrence relation is:
Tk=b+le/2j, E>0
=a, k=20
where | k/2 |, the floor of k/2, is the largest integer less than £/2. We
can solve this for T,, again by simple substitution:
T,=b+ T2
=b+(b+Tjnsy)
=2b + Ty
=2b+(b+T\nsy)
=3b+ T|ns )
We can see that, as n is progressively halved, the coefficient of
b is increased by 1. Thus we ultimately arrive at:
T,=bllogn|+T
=b|llogn|+b+ Ty
=bllogn|+ (b +a)
This is only the cost of the call of P, of course. We must also add the
small cost of the body of Power.

This derivation suggests other alternatives, such as stopping the
recursion one step earlier (where £ = 1) and modifying the body of
Power appropriately. Note that this illustrates another advantage of
a two-level procedure: we can stop the recursion earlier without
needing to alter the specification. We leave it to the reader to pursue
this solution.

We indicated earlier that it is trivially easy to write inefficient
recursive procedures. Here is a case in point. Suppose we unthinkingly
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used explicit multiplication instead of squaring as shown in Fig. 1.20.

Fig. 1.20. A bad version of Power.
function Power(x:real; n:integer):real;
function P(k:natural):real;
begin
if k = 0 then P :=1
else if odd(k) then P := P(k div 2)*P(k div 2)*x
else P := P(k div 2)*P(k div 2)
end { of function "P" };

begin
if x = 0 then Power := 0
else if n < 0 then Power := 1/P(-n)
else Power := P(n)
end { of function "Power" };
Unless we have a compiler which can recognise that the multiplications
can be replaced by squarings, we find that the procedure is actually
worse than the original two-level solution of Fig. 1.18. This is because,
at each level, P is called twice. The recurrence relation is:
Tk=b+2T[k/2J, k#0
=a, k=20
whose solution is (a + b)7 —a, where 7 is 21187 1+1 that is the
smallest power of 2 which is greater than n.
Fig. 1.21 gives a detailed analysis of these procedures, including
the body of Power, in which n is the absolute value of the parameter,
which is assumed as likely negative as positive.

Fig. 1.21. Analysis of the Power functions.

One-level Two-level
Wt (Fig. 1.17) (Fig. 1.18) (Fig. 1.19) (Fig. 1.20)

Arithmetic 1 2at1 2n+1 2l |logn | +3%  Sntn—2
Assignment 1 n+1i n+2 |logn | +3 2n
Test 1 3n+4 n+3 2 llogn]+5 3n
Parameter

evaluation 1 2n+3 n+3 llogn | +4 2n+1
Procedure call

and exit 5 nt1i n+2 l|logn | +3 2n
Elementary

operations 13n+17 10n+19 114 |logn | +30% 20n+n—1
Elementary

operations

(n=240) 3137 2419 111 5359
Time on

Cyber 73

(n=240) 10200 us 8700 us 400 us 20900 us
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Note that this small error has changed the order of complexity of
the procedure from O (log n) to O(n). Note, too, that the possibility
of such a drastic effect for such a trivial change does not usually
occur with iterative procedures.

1.9 Searching
One of the fundamental operations of computer science is
searching for an item of a given key in a collection of such items. We
assume that the items are of a type itemtype defined:
type itemtype = record
key :keytype;
info :infotype
end
where both keytype and infotype are left unspecified.
Let us assume that the items are held in an array whose type is
defined by:
type sizetype = 1 .. max;
arraytype = array [sizetype] of itemtype
where max is an appropriate constant.
Let us assume that the items are not ordered on their keys. In
Fig. 1.22 we give an obvious function which proceeds through the
array until either the key is found, or all items have been compared.

Fig. 1.22, Searching an array.

function InArray(var a:arraytype; n:sizetype; k:keytype):Boolean;

function I(j:sizetype):Boolean;
begin
if k = alj]l.key then I := true
else if j = n thenr I := false
else T := I(j+1)
end { of function "I" };

begin
InArray := I(l)
end { of function "InmArray" };

On average half the elements will be compared so that the
function is O (n).

If the items are held in ascending order of their keys we can do
much better by using the method known as binary-chopping, which
operates as follows. We compare the key of the item being sought
with the key of the item in the middle of the array. If it is the
smaller, then the item, if it is present, must be in the lower half of
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the array; otherwise it must be in the upper half. Fig. 1.23 gives an
appropriate function.

Fig. 1,23, Binary-chopping.
function InArray(var a:arraytype; n:sizetype; k:keytype):Bcolean;
function I(1l,u:sizetype):Boolean;
var mid:sizetype;
begin
if 1 =u then I :=k = afl].key
else
begin
mid := (1+u) div 2;
if k <= a[mid].key then I := I(1,mid)
else I := I(mid+l,u)
end
end { of function "I" };

begin
InArray := I(l,n)
end { of function "InArray" };
Clearly this procedure is O (log n) since at each stage the size of
the array is halved.

1.10 Recursion and reversal

The procedure WriteNatural prints out the natural
number which is its parameter in the usual way: the procedure
WriteReversedNatural of Fig. 1.24 prints it out in reverse. That is,
if 1 = 375, it prints 573.

Fig. 1.24. A procedure for writing natural numbers reversed.

procedure WriteReversedNatural(i:natural);
begin
if i < 10 then
write(chr(i + ord('0")))
else
begin
write(chr(i mod 10 + ord(’'07)));
WriteReversedNatural(i div 10)
end
end { of procedure "WriteReversedNatural" };

The only difference between the procedures is the position of
the recursive call: in WriteNatural it occurs before the writing of
a character, in WriteReversedNatural it occurs after. Thus it is often
trivial to modify a recursive procedure to produce a reversed form
of output - and to accept a reversed form of input. We shall see
a useful example in Chapter 2.

With non-recursive procedures the changes are less trivial. In
Fig. 1.25 we give an iterative procedure for WriteReversedNatural.
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